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Abstract. Time, effort and the estimation of number of staff desired are critical
tasks for project managers and particularly for software projects. The software
testing process signifies about 40–50% of the software development lifecycle.
Faults are detected and corrected during software testing. Accurate prediction of
the number of test workers necessary to test a software before the delivery to a
customer will save time and effort. In this paper, we present two models for
estimating the number of test workers required for software testing using Artificial
Neural Networks (ANN) and Genetic Programming (GP). We utilize the expected
time to finish testing and the rate of change of fault observation as inputs to the
proposed models. The proposed models were able to predict the required team size;
thus, supporting project managers in allocating the team effort to various project
phases. Both models yielded promising estimation results in real-time applications.
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1 Introduction

Software testing process is defined as the process of implementing a program with the
intent to find software bugs, errors or any defects [1]. It requires numerous efforts and
might cost more than 50% of the project development effort [1]. This process should
deliver software with minimum or no faults. The software development life cycle is all
about people, methodologies and tools. This is evident from the software development
process (see Fig. 1). People (i.e., staff) need to collect the project requirements, develop
a project plan, make a design, deploy the project, test and validate the business
requirements and finally detect and fix the bugs if any. The standard software devel-
opment life cycle consists of multiple stages: requirements, analysis and design, cod-
ing, unit and system test and finally software evolution. The staff management process
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for the project development involves the following five phases: Staff Planning, Staff
Acquisition, Staff Training, Staff Tracking, and Staff Transition. This process appears
in Fig. 2. Specific information related to staff must be collected, organized and updated
during the project development life cycle. The project manager should be able to
identify the size of the team required to test the software that primarily relies on the
expected number of faults. Employing a large team with no need means money loss;
while employing a small team with a lot of bugs in the software means a delay on the
delivery day. Therefore, a compromise must be reached. This can be achieved by
building a model that can estimate the required number of test workers to utilize the
bugs or faults in the software.

More recently, there has been a growing interest in the use of evolutionary com-
putation and soft computing techniques such as Genetic Algorithms (GAs), Genetic
Programming (GP), Artificial Neural Networks (ANNs), Fuzzy Logic (FL), Particle
Swarm Optimization (PSO) and Grey Wolf Optimizer (GWO) to solve a variety of
software engineering problems such as estimating software effort and detecting faults
during software testing [2–5]. Sheta [2] presented two models using GAs to estimate
the effort required to develop software projects. Several models in predicting the
software cost using PSO, FL and other cost estimation models were presented in [3].
Sheta et al. [4] showed an estimate of the number of test workers necessary for a
software testing process using ANN. In [5], the authors used GWO to estimate the
parameters of the software reliability growth model in order to reduce the difference
between the expected and the actual number of failures of the software system.

In this paper, we use ANN and GP approaches to developing models for estimating
the number of test workers required to test software utilizing the number of measured
faults. Experiments are conducted for two different projects to evaluate the performance
of the developed models. This paper is organized as follows. In Sect. 2, an overview of
the artificial neural network is given with an insight into the multilayer Perceptron
architecture and the learning algorithm used. Section 3 presents the basic concepts of
genetic programming. The test data used for training and testing the models is pre-
sented in Sect. 4 with the proposed model structure given in Sect. 5. Section 6, lists the
criteria used in assessing the models. Finally, the results of the developed models are
presented in Sect. 7 with concluding comments in Sect. 8.

Fig. 1. Software development process [4]. Fig. 2. Staff management process [4].
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2 Artificial Neural Network

ANN, a widely parallel distributed processor, has the apt to identify functions,
examples or patterns so long as it is trained with prior knowledge. Basically, ANNs
have emerged to simulate biological neural systems-particularly the human brain. The
fundamental structure of the ANN system consists of a number of interconnected
processing elements, referred to as neurons, which are organized in the input, output,
and hidden layers. The neurons are joined to each other through a set of synaptic
weights. Each neuron receives inputs from a single or multiple neurons, processes it
through a specific activation function, and accordingly generates a transformed output
to other neurons or external outputs. Although every single neuron performs its task
somewhat incompletely or at a slow pace, jointly ANN structure can conduct an
immense number of functions efficiently. To create an optimal design for an ANN with
good fitting ability, there is a need to create a suitable configuration for the network,
mainly in regards to hidden neurons, type of transfer function, number of input vari-
ables and the learning algorithm used to adjust the network’s weights. Actually, when
the number of model parameters increases, this favors the learning over the network
and therefore preferable fitting. The learning algorithm may be the most important
factor among all in identifying the model, as it is an essential process for updating the
network weights and estimating the model parameters that fit with the given data set so
that the target function is met. ANN continually updates its weights during the learning
process until sufficient knowledge is acquired. When the learning process is completed,
it is needful to assess the network’s generalization capability using unknown samples
of the problem. The importance of learning algorithms has spurred the development of
many learning algorithms that are looking for an optimal computational effort that
allows for finding optimal quality solutions. Several superb features of ANN have
made it a potent computational tool to address a wide range of problems in a variety of
areas [6, 7]. ANNs have an ability to learn from unseen examples that have not been
formulated, viewed or used. In this context, ANN can be treated as a multivariate
nonlinear statistical method and as a universal approximator to approximate nonlinear
functions with the desired accuracy.

2.1 Multi-Layer Perceptron

Multi-Layer Perceptron (MLP), as a global approximator of functions, is the most
familiar kind of ANN. It became prevailing with the evolution of the Back-Propagation
(BP) learning algorithm [8]. The training process of MLP relies on an optimization
scheme that looks for the best set of network parameters, or specifically the weights, in
relation to input and output patterns to be fit by ANN, referred to as a supervised
learning scheme. The MLP network is organized into three layers; the input layer,
hidden layer, and output layer. The ANN is expanded when hidden neurons are added
to a hidden layer, one by one until the ANN model is capable of achieving its func-
tionality with the lowest possible error. This depends principally on the problem’s
complexity that is allied to the complexity of the input-output datasets. The BP
algorithm consists mainly of two phases. The first layer is ordinarily referred to as the
forward pass and the second layer is known as the backward pass. In the forward
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process: an external input vector X ¼ x1; x2; � � � ; xnð Þ with dimension n is initially fed
to the input neurons of the input layer; then the outputs from the input neurons are fed
to the hidden neurons of the hidden layer; finally, the outputs of hidde the n layer are
presented to the output neurons of the network, leading to output yin the output layer
where the network weights are all stationary. In the backward process, the weights are
fine-tuned on the basis of the error between the true and the in demand outputs. The
prefatory step in training ANNs is to initialize the weight vector ~w. During the com-
putation of the forward process, the weight vector is adjusted until it reaches the desired
behavior. The output y is assessed to measure the network’s performance; if the output
is not desirable, the weights have to be iteratively adapted in terms of input patterns. In
supervised learning, the goal is to generate an output approximation with coveted
patterns of input-output samples as described in Eq. 1.

~Tk ¼ xk 2 R
N ; dk 2 R

M
� �� �

; k ¼ 1; 2; � � � ; p ð1Þ

where ~Tk are the training samples, x is an input pattern, d is the desired response, N and
M are the number of samples in the input and output patterns.

The requirement is to design and analyze the parameters of the network model so
that the actual output yk due to xk is statistically close to the required degree dk for all
k. The MLP weights can be updated using the BP algorithm. The use of BP algorithm
to adjust the ANN’s weights may stick in a local minimum, and further, it might not be
able to solve non continuous problems. Thence, it may be better to pay attention to
other learning algorithms that can address non nonlinear problems, which are critical to
achieving high level of performance in solving complex problems. The vector ~w is
updated through the learning process of the MLP-type ANN until an error criterion
asthe one defined in Eq. 2 is converged to an appropriate value.

e ¼ 1
M � p

XM
i¼1

yi xk;~wð Þ � dikð Þ2 ð2Þ

Where: yi is the ith output overall p pattern samples, and dik is the desired result.
The MLP-ANN can be represented mathematically as stated in Eq. 3 [9]:

ŷi tð Þ ¼ gi u; h½ � ¼ Fi

Xnh
j¼1

Wi;jfj
Xnu
l¼1

xj;lul þxj;0

 !
þWi;0

" #
ð3Þ

where ŷi tð Þ is the output signal at time sample t, gi is the function recognized by the
ANN model and h identifies the weight parameter vector, which includes all the tunable
parameters of the network (weights xj;l and biases Wi;j). Here, MLP is trained using the
BP algorithm so that the output ŷ corresponds to the input u when an objective criterion
as introduced later is met.
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3 Genetic Programming

GP is an evolutionary-based algorithm with a global search potential proposed by Koza
in 1992 [10]. GP is among the most well-known algorithms under evolutionary
algorithms or nature-inspired algorithms. It is inspired based on the biological evolu-
tionary ideas of natural selection which is capable of finding solutions for a broad
variety of real problems through automatically evolving randomly generated models.
The relations are arrived at out of an evolutionary search process, with an assortment of
potentialities for the real algorithm concerned, for instance, a plan, an expression, a
formula, a decision tree, a control strategy or problem-based learning model [11]. The
evolutionary process of GP in this context commences by generating a population of
individuals at random, each representing a computer program. This is followed by an
evaluation of an evaluation metric measure (i.e., the fitness function) of the program
with regard to its capacity to reach a solution. The fitness addresses how an individual
fits an environment; it is a criterion for selecting individuals who are interested in
generating a new population. Programs which are especially fit are chosen for
recombination based on the fitness value to create a new population using genetic
operators, including selection, crossover besides the mutation operator. The evolu-
tionary process is repeated until a passible solution is reached, or the number of
predefined runs is exceeded. The fitness function is recalculated inside each iteration
loop until convergence. The programs can be perceived as a syntax tree, where a
branch node is a component from a function group, which in turn may accommodate
arithmetic functions, trigonometry, and logic operators with at least one argument [10].
The following steps are involved iteratively in the GP evolutionary process until the
convergence process is achieved:

1. Selection step: some individuals (computer programs) are picked for reproduction
using a defined selection procedure. Selection mechanisms may take, for example,
one of the following forms:

• Roulette wheel, where the likelihood that an individual is picked relies on its
normalized fitness value [11];

• Ranking, Which depends on the order of fitness values of individuals [12];
• Tournament, where individuals are sampled from the population, where the

individual with the highest fitness is picked out provided that there is more than
one individual [11];

• Elitism copies the best individuals in the following generation, where it can
enhance performance by eschewing the loss of fit individuals [12];

2. Creation step: new individuals are produced through the use of reproduction
operators, which typically involve the crossover and mutation operators. These
operators accomplish random soft changes to create individuals. Crossover is a
process that produces two new individuals through a probabilistic swap of genetic
information between two randomly selected parents, facilitating a global search for
the best individuals in operation. Mutation is an operator that prompts a slight
probabilistic change in the genetic structure, resulting in a local search. It selects
one individual that commences by choosing a point at random within the tree, and
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then it supersedes a function or a terminal set with the same kind of element. Old
individuals are replaced by the new individuals created by the reproduction oper-
ators in order to build a new generation.

3. Evaluation step: This process continues to iterate until an optimal solution based
on fitness metric is achieved, or the number of generations is exceeded.

There is an extensive literature on GP for solving a broad range of real complex
problems and, more recently, a number of studies have been reported on the success of
GP for solving several problems in crucial areas such as software engineering, image
processing, manufacturing and statistical modeling [13, 14].

4 Test/Debug Data

To evaluate the accuracy of the developed MLP-ANN and GP models, extensive
experiments were conducted on test datasets for two different projects, namely, project
A and project B. The collected data consists of 200 modules with each having a one-
kilo line of code of FORTRAN for real-time control application [15]. A test/debug data
set for project A consists of 111 measurements of test instances (D), real detected faults
(F), number of test workers (TW) as given in Table 1.

A test/debug dataset for project B contains 46 measurements as shown in Table 2
[15]. The available measurements are limited in this case. This represents a challenge
for traditional modeling methods.

5 Proposed Models for Test Workers Estimation

Two types of models were explored for projects A and B as aforementioned. The first
model was developed using MLP-ANN and the second model was formed using
GP. Here, a new model structure that can help estimating the number of test workers
during the software testing process was proposed. The available data set includes the
date of test d, the observed number of faults F and the number of test workers y. The
proposed model structure is given in Eq. 4.

y ¼ f
@F
@t

; d n� tð Þ
� �

ð4Þ

Where:@F@t is the rate of change of the faults as a function of time t, t ¼ 1; 2; � � � ; n
and n is the expected day to finish the software testing. We will rename this attribute as
x1.d(n−t) is the countdown to the end day of testing. We will rename this attribute x2.

6 Model Evaluation Criteria

In order to verify the performance of the developed MLP-ANN and GP models, we
have explored a number of performance assessment functions, including:
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• Correlation Coefficient (R2):

R2 ¼ 1�
Pn

i¼1 yi � ŷið Þ2Pn
i¼1 yi � �yð Þ2 ð5Þ

• Mean absolute error (MAE):

MAE ¼ 1
n

Xn

i¼1
y� ŷj j ð6Þ

Table 1. Test/debug dataset for project A.

D F TW D F TW D F TW D F TW

1 5 4 29 2 6 57 2 4 85 0 2
2 5 4 30 5 6 58 3 4 86 0 2
3 5 4 31 4 6 59 2 4 87 2 2
4 5 4 32 1 6 60 7 4 88 0 2
5 6 4 33 4 6 61 3 4 89 0 2
6 8 5 34 3 6 62 0 4 90 0 2
7 2 5 35 6 6 63 1 4 91 0 2
8 7 5 36 13 6 64 0 4 92 0 2
9 4 5 37 19 8 65 1 4 93 0 2
10 2 5 38 15 8 66 0 3 94 0 2
11 31 5 39 7 8 67 0 3 95 0 2
12 4 5 40 15 8 68 1 3 96 1 2
13 24 5 41 21 8 69 1 3 97 0 2
14 49 5 42 8 8 70 0 3 98 0 2
15 14 5 43 6 8 71 0 3 99 0 2
16 12 5 44 20 8 72 1 3 100 1 2
17 8 5 45 10 8 73 1 4 101 0 1
18 9 5 46 3 8 74 0 4 102 0 1
19 4 5 47 3 8 75 0 4 103 1 1
20 7 5 48 8 4 76 0 4 104 0 1
21 6 5 49 5 4 77 1 4 105 0 1
22 9 5 50 1 4 78 2 2 106 1 1
23 4 5 51 2 4 79 0 2 107 0 1
24 4 5 52 2 4 80 1 2 108 0 1
25 2 5 53 2 4 81 0 2 109 1 1
26 4 5 54 7 4 82 0 2 110 0 1
27 3 5 55 2 4 83 0 2 111 1 1
28 9 6 56 0 4 84 0 2
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• Root mean square error (RMSE):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
y� ŷð Þ2

r
ð7Þ

• Relative absolute error (RAE):

RAE ¼
Pn

i¼1 y� ŷj jPn
i¼1 y� �yj j ð8Þ

• Root relative squared error (RRSE):

RRSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 y� ŷð Þ2Pn
i¼1 y� �yð Þ2

s
ð9Þ

where y is the actual number of test workers, ŷ is the estimated value and �y is the
mean of the signal y using n measurements.

7 Experiments and Results

We generated the required attributes x1andx2from the available data sets of Projects A
and B to train an ANN and develop a GP mathematical model for test worker esti-
mation. For MLP-ANN, one hidden layer was used while the rest of the parameters are
tuned as shown in Table 3. The tuning parameters of GP are set as shown in Table 4.

Table 2. Test/debug dataset for project B.

D F TW D F TW D F TW D F TW

1 2 75 13 3 78 25 1 15 37 3 5
2 0 31 14 4 48 26 7 31 38 0 27
3 30 63 15 4 75 27 0 1 39 0 6
4 13 128 16 0 14 28 22 57 40 0 6
5 13 122 17 0 4 29 2 27 41 0 4
6 3 27 18 0 14 30 5 35 42 5 1
7 17 136 19 0 22 31 12 26 43 2 6
8 2 49 20 0 5 32 14 36 44 3 5
9 2 26 21 0 9 33 5 28 45 0 8
10 20 102 22 30 33 34 2 22 46 0 2
11 13 53 23 15 18 35 0 4
12 3 26 24 2 8 36 7 8
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The observed and estimated number of workers calculated for the test instances and
the real detected faults for Project A based on ANN is shown in Fig. 3 and its con-
vergence is shown in Fig. 4. For Project B, the observed and estimated number of
workers and the convergence of ANN are shown in Figs. 5 and 6, respectively.

Table 3. MLP Parameters.

Parameter Value

Parameter Value
Architecture MLP
Training method Back-propagation
Hidden Layers 1
hidden neurons 30
Learning rate 0.9
Maximum epochs 300

Table 4. GP regression parameters.

Parameter Value

Population size 500
Maximum tree depth 4
Selection mechanism Tournament
Tournament size 10
Mutation probability 0.14
Crossover probability 0.84
Function operators [+, −, �]
Cross-validation 10-fold

Fig. 3. Project A: observed and estimated
number of test workers using MLP.

Fig. 4. Project A: convergence of the
MLP model

Fig. 5. Project B: observed and estimated
number of test workers using MLP.

Fig. 6. Project B: convergence of the
MLP model.
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The GP models for projects A and B are shown respectively in Eqs. 10 and 11.

yA ¼ 0:00528x1 x1 þ x2ð Þ2�0:0895x1x2 � 3:56� 10�4x21x2 � 0:0886x21
þ 8:95� 10�4x32 � 5:03� 10�6x21x2 x1 þ x2ð Þ2 þ 9:33

ð10Þ

yB ¼ 0:0614x21 � 6:72� 10�4x21x2 þ 0:00202x22 � 1:63� 10�5x32
�6:38� 10�7x1x2 x1 þ 5:0ð Þ x1 � x2ð Þþ 1:03

ð11Þ

The observed and predicted numbers of test workers for projects A and B based GP
are shown in Figs. 7 and 8, respectively. The evaluation results of MLP and GP models
are shown in Table 5. The results of these models are very competitive with a slight
superiority for MLP in one case and GP in the other case. GP still has merit of creating
efficient mathematical models which are easier to value than MLP models.

8 Conclusions

The proposed work has demonstrated the use of two computational techniques, namely,
Multilayer Perceptron Artificial Neural Network and Genetic Programming methods, to
model the relationship between the number of test workers and the measured faults in
software to build two prediction models. In this context, the developed models utilized

Fig. 7. Project A: observed and estimated
number of test workers using GP.

Fig. 8. Project B: observed and estimated
number of test workers using GP.

Table 5. Evaluation results of MLP-ANN and GP models.

Criterion Project A Project B
MLP GP MLP GP

Correlation coefficient 0.99531 0.90161 0.84726 0.84228
Mean absolute error 0.036364 0.036364 13.044 14.778
Root mean squared error 0.19069 0.8528 19.589 18.598
Relative absolute error 2.3918% 34.681% 50.355% 57.046%
Root relative squared error 9.7244% 43.489% 56.775% 53.905%
Total Number of Instances 111 111 46 46
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the expected day to finish testing and the rate of change of faults as inputs to the
models. Two case studies were presented, and several evaluation criteria were con-
ducted to validate the performance of the proposed models. All evaluation measures
have reported a high level of performance, on the basis of the satisfactory predication
estimates obtained, suggesting that the presented MLP and GP models are highly
accurate, learned the dynamic relationships between the inputs and output successfully.
The use of GP and ANN to estimate the number of test workers using software faults is
an exciting direction for future research. Further work is needed to assess the suitability
of the proposed models to other test instances.
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